Blood Screening | Transfusion Future Product Market Concepts

September, 2013

Opportunities Exist to Grow the Transfusion Testing Business

- Current blood screening markets are for the most part mature, leading to flat to single digit revenue growth.
- Therefore, one can potentially reinvigorate transfusion test growth through three initiatives
 - Facilitate decentralized donation in developing countries and certain regions (e.g., India, rural China)
 - Investigate serology for donation in addition more revenue in developed markets, likely a good entre and beachhead into developing markets
 - Grow traditional, centralized sales in developing countries, and local donation sites where economically feasible and allowed by regulation, including NAT conversion and menu expansion

Potentially reinvigorate transfusion test growth through three initiatives

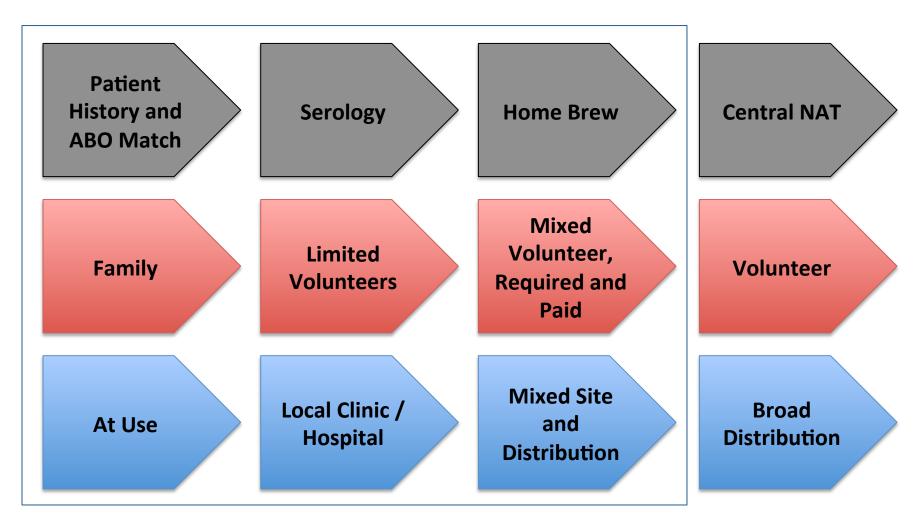
- Facilitate decentralized donation in developing countries, and some developed markets (e.g., India, rural China)
 - "Non-tracked" incremental market from NAT \$280 million
 - Incremental revenue at the same rate as developed country donations per capital ("developed-equivalent") \$2,725 million (of which \$2,100 million in middle healthcare spending / capita countries)
 - Partner to get to decentralized locations
 - Add other assays for high-incidence areas, beyond typical screening, where incidence is high (e.g., dengue fever)
- Investigate serology for donation in addition more revenue in developed markets, likely a good entre and beachhead into developing markets
- Grow traditional, centralized sales in developing countries, and local donation sites where economically feasible and allowed by regulation, including NAT conversion and menu expansion
 - Mandates requiring NAT in China, India, and Russia
 - "Tracked" incremental market from NAT conversion with current menu \$400 million
 - Incremental new tests, such as HAV, HEV, dengue fever, and parvo virus (for plasma screening)

WORLDWIDE OPPORTUNITY

International Blood Donations Provide Testing Opportunities

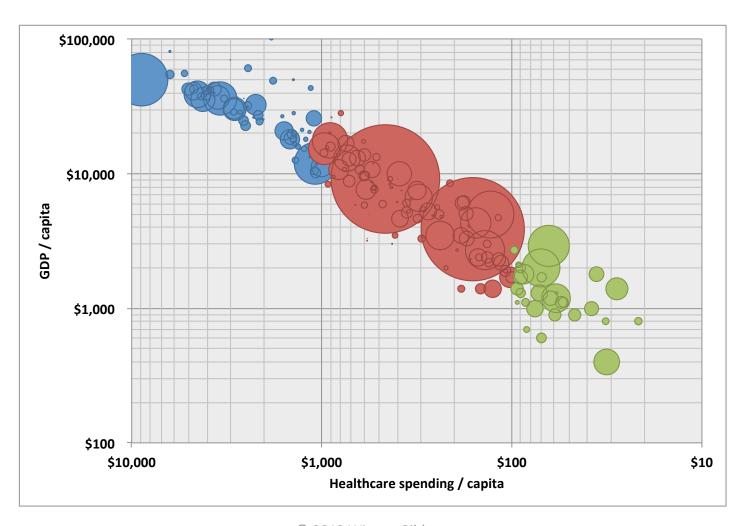
- 92 million blood donations every year
 - 50% collected in high-income countries with only 15% of the world's population, leading to a developed-country total equivalent market of 310 million donations.
- Approximately 8000 blood centers in 159 countries report on blood donations.
 - Average, annual blood donations per blood center in high-income countries is 30,000 versus 3700 low-income countries
- Only 62 countries have national blood supplies entirely from voluntary, unpaid blood donations.
- 39 countries in the list were unable to screen all blood donations for one or more of these transfusion-transmissible infections: HIV, hepatitis B, hepatitis C and syphilis.
- 106 countries have national guidelines for appropriate clinical use of blood.
- Only 13% of low-income countries have a national hemovigilance system to monitor and improve safe blood transfusion.

Source: WHO

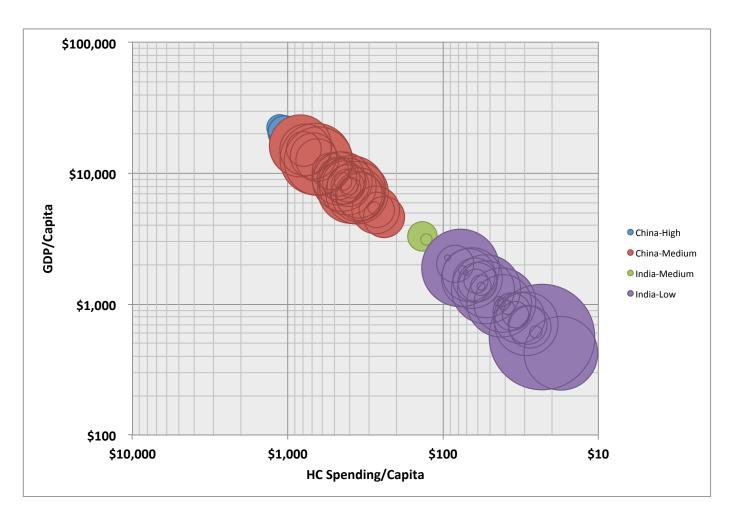

Donation Systems in Developing Countries Show Clinical Need

- 50% of donations in high-income countries with only 15% of the world's population, leading to a developed-country total equivalent market of 310 million donations.
- 39 countries (of 159 reporting) unable to screen all blood donations for one or more of these transfusiontransmissible infections: HIV, hepatitis B, hepatitis C and syphilis.
- Only 13% of low-income countries have a national hemovigilance system to monitor and improve safe blood transfusion.

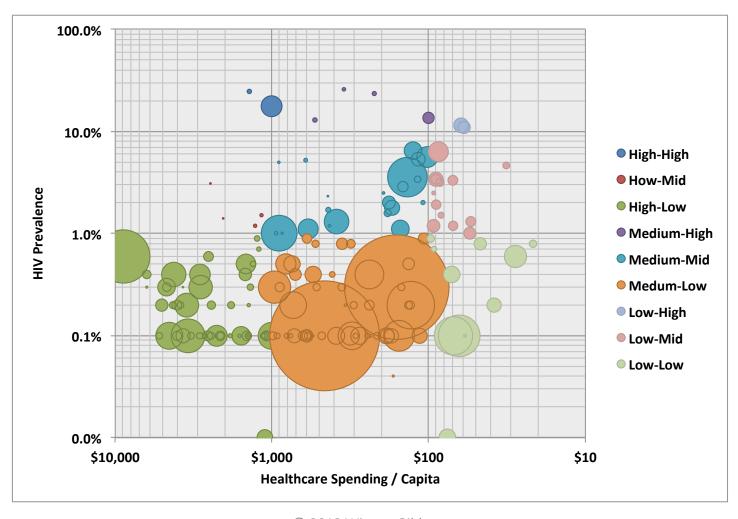
Source: WHO



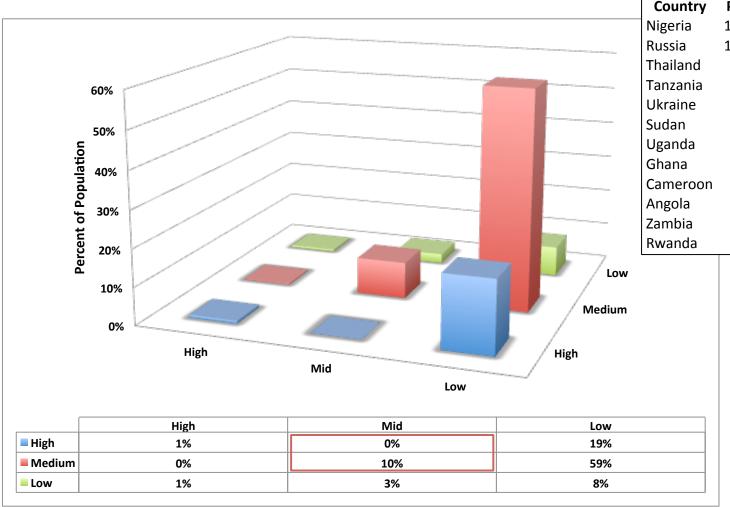
POC Needed before Testing, Sourcing, and Distribution of Blood Fully Evolved



Targeting Should Occur in Highest Population at the Right Stage

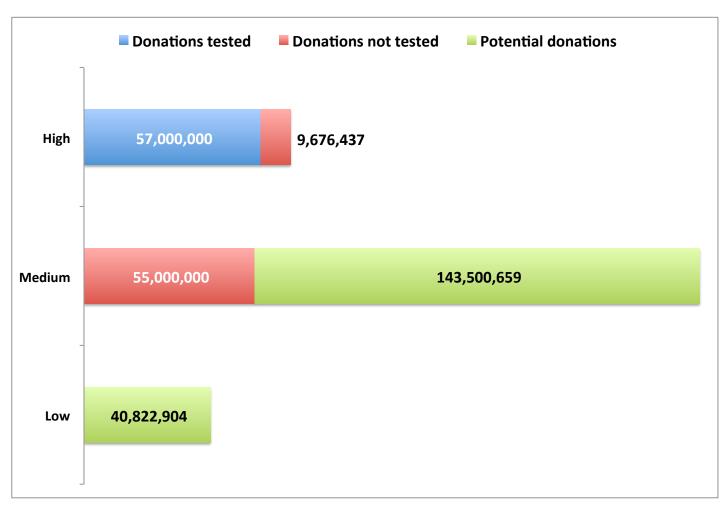


China and India Should be Considered by Region

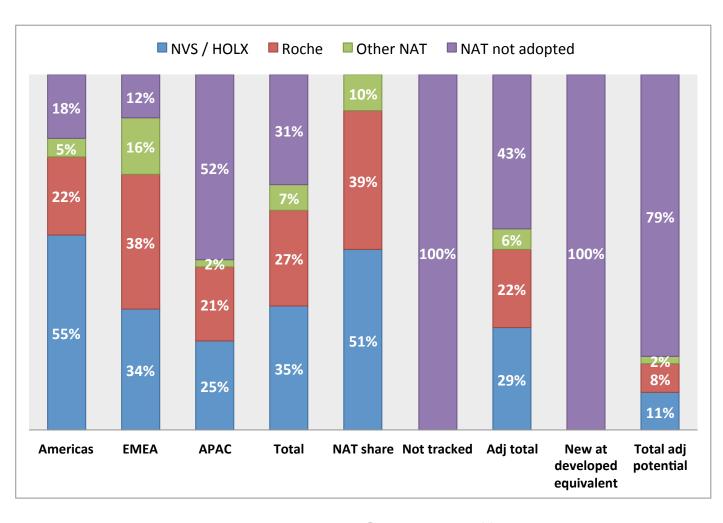


Example - Country Prioritization by HIV Prevalence

Target Countries with Medium HC Spending / Capita and >1% HIV

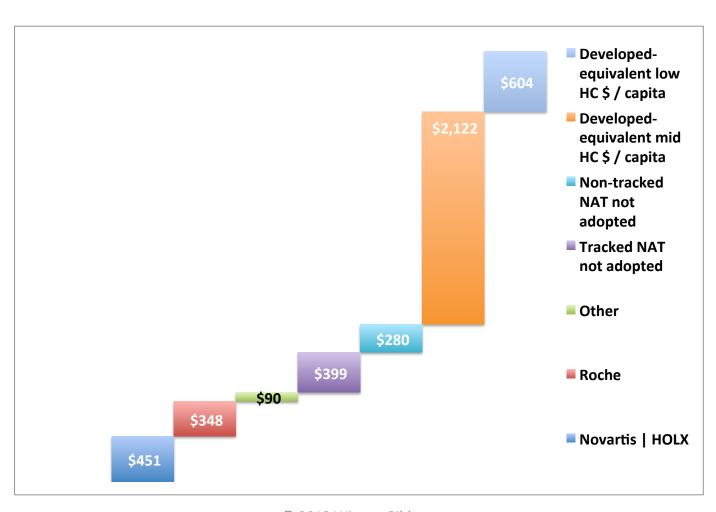


Country	Population	HIV	HC	/ cap
Nigeria	174,507,539	3.6%	\$	138
Russia	142,500,482	1.0%	\$	903
Thailand	67,448,120	1.3%	\$	390
Tanzania	48,261,942	5.6%	\$	102
Ukraine	44,573,205	1.1%	\$	585
Sudan	34,847,910	1.1%	\$	151
Uganda	34,758,809	6.5%	\$	126
Ghana	25,199,609	1.8%	\$	172
Cameroon	20,549,221	5.3%	\$	117
Angola	18,565,269	2.0%	\$	180
Zambia	14,222,233	13.5%	\$	100
Rwanda	12,012,589	2.9%	\$	147


Obviously other issues, such as political and regulatory considerations are also important

© 2013 Winton Gibbons

Rough Donations and Testing by Healthcare Spending / Capita



Potential for New NAT Testing High

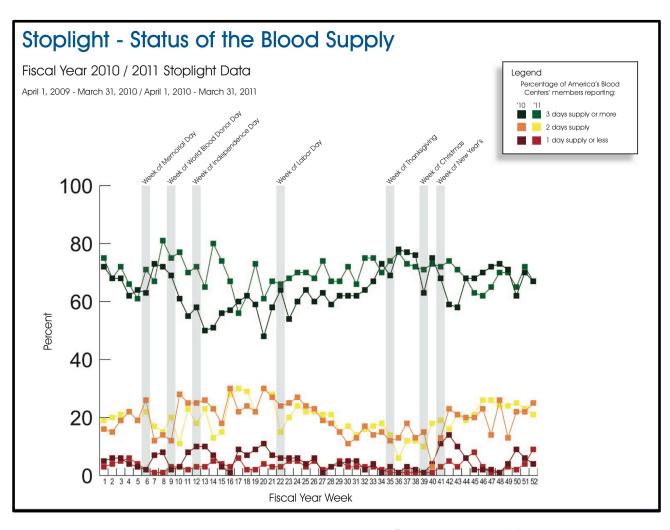
- Tracked: 92 million
- Not tracked:20 million
- Potential at developed equivalent: 195 million

NAT Potential Substantial at Current Equivalent Price of \$14 per Donor

Lever Potential Partners for POC Systems and Sales Forces

- NAT POC systems
 - Biofire
 - Cepheid
 - Nanosphere
 - Genmark
 - Great Basin
 - Meridian
 - Quidel
- Serology
 - Mainstream not Roche or Abbott

- POC Serology | IA
 - Alere
 - LRE/ Symbient / DCN consulting
 - Meridian
 - Orasure (saliva)
 - Quidel
 - Response Biomedical
- Blood processing
 - Fenwal / Fresenius
 - Haemanetics
 - Harvest


US (DEVELOPED COUNTRIES) STILL HAS OPPORTUNITIES

Donation in US Could still be Increased

- Donations
 - 10.8 million volunteers donate blood each year
 - 29 percent of which are first time donors
 - 17 million units of whole blood and red blood cells
- Who donates blood?
 - 38 % of the US population eligible
 - Less than 10 percent do so annually.
 - Patients scheduled for surgery may be eligible to donate blood for themselves(autologous blood donation)
- Where is blood donated?
 - Bloodmobiles
 - Community blood centers
 - Hospital-based donor centers

Source: AABB; 2009 National Blood Collection and Utilization Report

Even Evolved Blood Donation Supply an Issue

Availability of blood in US

- Varies among regions
- Fluctuates throughout the year.
- Holidays / travel schedules, inclement weather and illness are factors
- Historically, blood collections can be low during the winter and summer months
- Guidance by FDA can eliminate, or defer donors
- Apheresis donation takes longer than whole blood
 - 1 to2 hours depending on the blood component(s) versus
 - 10 to 20 minutes

Even Developed Process has Some Potential Left

Donation (1 day?)

- Donor registers
- Health history and mini physical
- 1 pint of blood and several small test tubes collected
- Bag, test tubes and the donor record labeled with identical bar code
- Donation stored in iced coolers until transported to a center

Processing (1 day?)

- Donated blood scanned into database, and test tubes sent for <u>testing</u> in parallel
- Most blood centrifuged into transfusable components – red cells, platelets, and plasma
- Primary components like plasma, can be further manufactured into components such as cryoprecipitate
- Red cells leukoreduced
- Single donor platelets leuko-reduced and bacterially tested

Testing

(1 day || + 24 hours for data?)

- Test tubes received (one of five Red Cross National Testing Laboratories)
- Dozen tests
 performed on each
 unit of blood –
 establishes blood
 type, and tests for
 infectious diseases
- Test results transferred electronically to manufacturing facility within <u>24 hours</u>
- If test result positive, unit discarded and donor notified.
 Results confidential and shared with donor, except as required by law

Storage

(3 days until this?)

- When test results received, units suitable for transfusion labeled and stored
- Red Cells stored in at 6º C up to 42 days
- <u>Platelets</u> stored room temperature in agitators up to 5 days (2 days, or 5 days more?)
- Plasma and cryo frozen and stored in freezers up to 1 year

Distribution

(transportation time?)

 Blood is available to be shipped to hospitals 24 hours a day, 7 days a week

Source: US Red Cross

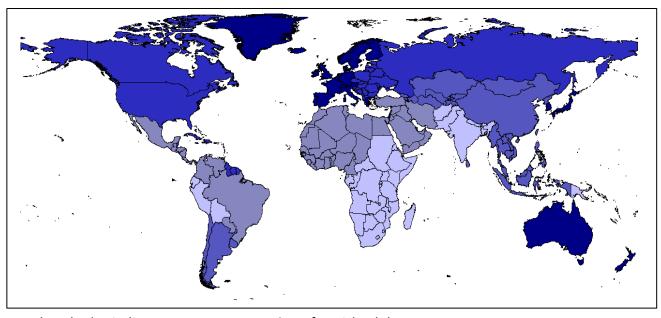
Apparent Opportunity for Platelet Donation Efficiency

Table 4-2. Outdated Components as a Percentage of the Total Number of Units of Each Type, Processed for Transfusion in 2008

	WB/RBCs	Whole-Blood- Derived Platelets	Apheresis Platelets	Plasma	Cryopre- cipitate	All Components
Outdated Total	447,000	480,000	270,000	103,000	46,000	1,346,000
Processed/ Produced	17,402,000*	1,964,000	2,130,000*	5,700,000	1,462,000	28,658,000
Percent Outdated	2.6%	24.4%	12.7%	1.8%	3.1%	4.7%

^{*}Numbers reported as processed or produced by an institution; this may differ from the number reported as collected, but not significantly.

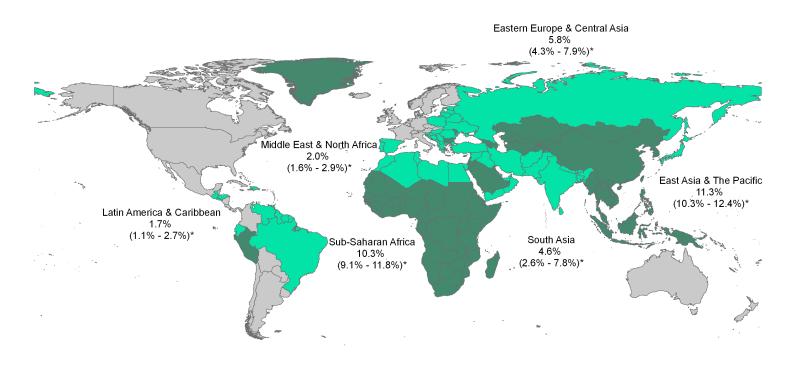
Source: 2009 National Blood Collection and

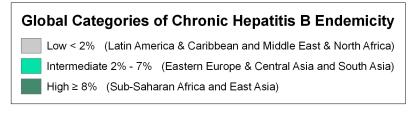

Utilization Survey Report

TEST MENU

Screening Test Panel Should be Set by Risk and Region

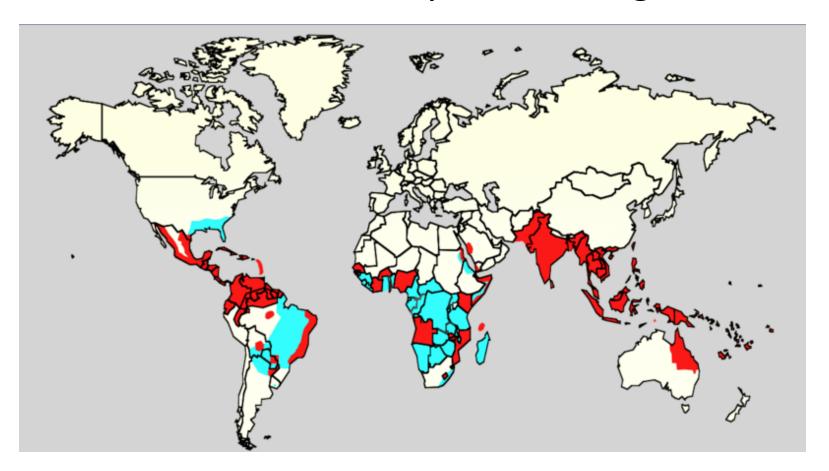
- NAT for HIV-1, HCV, and WNV
- NAT for HBV, HAV, HEV, dengue fever (e.g., India, Latin American and Africa), and parvo virus
- Other regional NAT and serology
- Hepatitis B surface antigen (HBsAg) / core antibody (anti-HBc)
- Hepatitis C virus antibody (anti-HCV)
- HIV-1 and HIV-2 antibody (anti-HIV-1 and anti-HIV-2)
- HTLV-I and HTLV-II antibody (anti-HTLV-I and anti-HTLV-II)
- Anti-CMV
- Serologic test for syphilis
- Antibody test for Trypanosoma cruzi (Chagas' disease)


Example - WHO Estimate of Adult HAV Prevalence



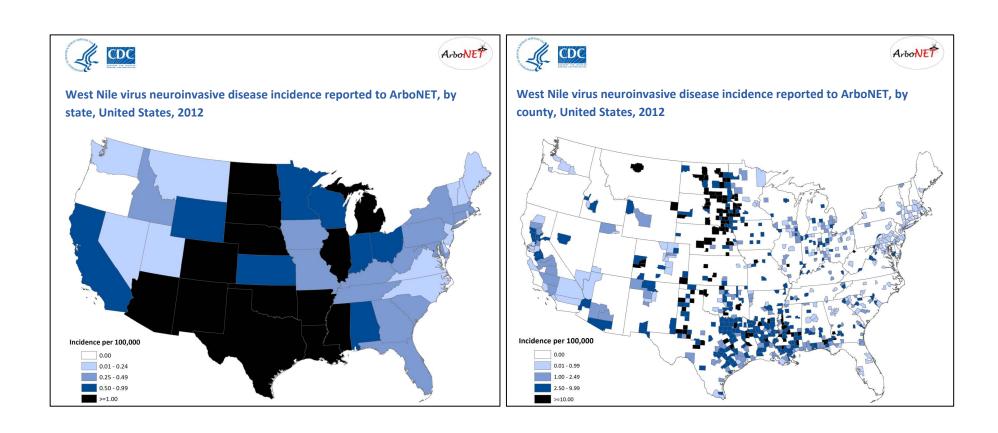
		Population Se	eroprevalence	Data Sources (adjusted for the total number of countries in region)		
	Region	Child Immunity Rate	Adult Susceptibility Rate	Total Articles Available	Recent Articles Available	
1	High income Asia Pacific	Low	High		A	
2	Central Asia	Medium	Low-Medium	$\nabla\nabla$	$\nabla\nabla$	
3	East Asia	Low-Medium	Low-Medium		A	
4	South Asia	High-Medium	Very Low		A	
5	Southeast Asia	Low-Medium	Low-Medium	A	$\nabla\nabla$	
6	Australasia	Low	High	**	A	
7	Caribbean	Low-Medium	Medium	$\nabla\nabla$	$\nabla\nabla$	
8	Central Europe	Low-Medium	Medium	A	A	
9	Eastern Europe	Low-Medium	Medium	A	$\nabla\nabla$	
10	Western Europe	Low	High		A	
11	Andean Latin America	High-Medium	Very Low	A	$\nabla\nabla$	
12	Central Latin America	High-Medium	Low	∇	$\nabla\nabla$	
13	Southern Latin America	Medium	Low-Medium	AA	A	
14	Tropical Latin America	Medium	Low			
15	North Africa / Middle East	Medium	Low	AA	A	
16	High income North America	Low	Medium			
17	Oceania	Medium	Very Low	$\nabla\nabla$	$\nabla\nabla\nabla$	
18	Central sub-Saharan Africa	High	Very Low	$\nabla\nabla$	$\nabla\nabla\nabla$	
19	East sub-Saharan Africa	High	Very Low	$\nabla\nabla$	$\nabla\nabla$	
20	South sub-Saharan Africa	High	Very Low	∇	$\nabla\nabla$	
21	West sub-Saharan Africa	High-Medium	Low	$\nabla\nabla$	$\nabla\nabla\nabla$	

Darker shades indicate a greater proportion of at-risk adults.


Example – PLoS Estimate of Adult HBV Prevalence (note contrast with HAV)

* Estimates from our random-effects meta-analysis (95% Confidence Interval)

Dengue Fever Incidence Varies Widely, Affecting NPV from History and Testing



Dengue distribution in 2006.

Red: Epidemic dengue and A. aegypti

Aqua: Just A. aegypti © 2013 Winton Gibbons

West Nile Incidence Varies Widely, Affecting NPV from History and Testing

Neglected Parasitic Infections include

Top 5

- Chagas Disease
- Cysticercosis
- Toxocariasis
- Toxoplasmosis
- Trichomoniasis

Other

- Babesiosis
- Malaria
- African trypanosomiasis
- Leishmaniasis

Neglected Tropical Diseases (NTDs)

- Buruli ulcer
- Chagas disease
- Cysticercosis
- Dengue fever
- Dracunculiasis (Guinea Worm Disease)*
- Echinococcosis
- Fascioliasis
- Human African
 Trypanosomiasis (African
 Sleeping Sickness)

- Leishmaniasis
- Leprosy (Hansen's disease)
- Lymphatic filariasis*
- Onchocerciasis*
- Rabies
- Schistosomiasis*
- Soil-transmitted Helminths (STH) (Ascaris, hookworm, and whipworm)*
- Trachoma*
- Yaws

Clinical need beyond blood banking to identify patients with Chagas

- CDC estimates 300,000 or more Trypanosoma cruziinfected individuals of Hispanic origin currently live in the United States.
- Since blood donor screening began, the number of requests to CDC for consultation and drug release for Chagas disease has increased markedly
- Only approximately 11% of Chagas seropositive blood donors have contacted CDC for consultation regarding treatment.
- Chagas disease is endemic throughout much of Mexico, Central America, and South America, where an estimated 8–11 million persons are infected

Dengue Fever – High Burden and Need for both NA and IA Tests

Burden

- Mortality is 1–5% without treatment, and < 1% with treatment
- Severe disease carries mortality of 26%
- Dengue endemic in > 110 countries
- Infects 400 million people worldwide annually, with 100 million manifesting disease
- Leads to ½ million hospitalizations, and 25,000 deaths.

Testing

- PCR and viral antigen detection more accurate in the first seven days, but only of diagnostic value during this acute phase
- Tests for dengue antibodies, can be useful in confirming a diagnosis in later stages of infection.
 - IgM
 - In a person with symptoms, is considered diagnostic.
 - Becomes undetectable 30–90 days after a primary infection, but earlier following re-infections.
 - IgG
 - Is a useful indicator of past infection.
 - After primary infection, reaches peak levels in blood after 14–21 days.
 - In re-infections, peaks earlier and titres usually higher.
 - Detection alone is not considered diagnostic unless blood samples collected 14 days apart, and greater than 4x increase in levels.
 - Test for IgG and IgM can cross-react with other flaviviruses, and may result in a false positive after recent infections or vaccinations with yellow fever virus or Japanese encephalitis.

Table 3. Priority Needs for Enhanced Surveillance, Treatment, and Prevention Efforts for the High Priority Neglected Infections of Poverty.

Disease Category	Disease	Expanded Active Surveillance and Treatment	Newborn Screening and Treatment	Epidemiological Transmission Studies	New Diagnostics	New Drugs	New Vaccines
Helminth Infections	Ascariasis	+		+			
	Toxocariasis	+		+	+		
	Strongyloidiasis	+		+	+		
	Cysticercosis	+		+	+	+	
Protozoan Infections	Giardiasis	+					
	Cryptosporidiosis	+		+		+	
	Trichomoniasis	+					
	Chagas disease	+	+	+	+	+	+
	Leishmaniasis	+		+	+	+	
	Congenital toxoplasmosis	+	+	+	+	+	+
Bacterial Infections	Congenital syphilis		+	+			
	Brucellosis	+		+			
	Bovine tuberculosis	+		+			
	Trench fever	+		+			
	Leptospirosis	+		+			
Viral Infections	Dengue fever	+		+		+	+
	Congenital CMV	+	+	+		+	+

doi:10.1371/journal.pntd.0000256.t003

Hotez PJ (2008) Neglected Infections of Poverty in the United States of America. PLoS Negl Trop Dis 2(6): e256. doi:10.1371/journal.pntd. 0000256

http://www.plosntd.org/article/info:doi/10.1371/journal.pntd.0000256

- LinkedIn
 - http://www.linkedin.com/in/wintongibbons/
- Twitter
 - @wingibbons
- Blog
 - http://www.wingibbons.wordpress.com